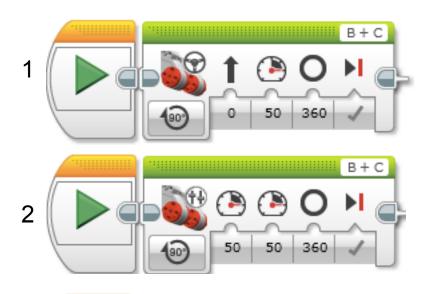
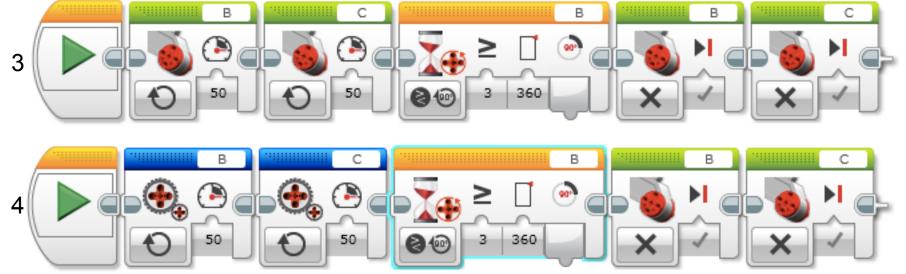

INTERMEDIATE PROGRAMMING LESSON:


DIFFERENT WAYS OF MOVING: SYNCHRONIZATION, REGULATED POWER, RAMP UP & DOWN

BY DROIDS ROBOTICS


GOAL

- The goal of this lesson is to teach you different blocks for moving the robot and when to use which block
- It can be confusing to figure out which block to use to move the motor

DIFFERENT WAYS TO MOVE

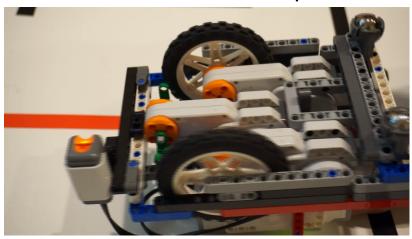
- How are these different from each other in terms of the following?
 - Power Regulation
 - Motor Synchronization
 - Ramp up/ramp down

REGULATED POWER

- Regulated power tries to move the robot at a fixed target speed
- When the robot has trouble moving because it is heavy, it is moving uphill, its battery is dead, or it is blocked, power regulation gives more power to the motor to reach its target speed
- This is good for ensuring that the robot is moving at a predictable speed

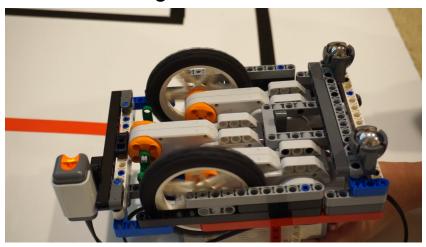
SYNCHRONIZED MOTORS

- Synchronized motors makes sure that both motors turn the same amount (or at some fixed ratio)
- If one wheel gets stuck, it prevents the other wheel from spinning
- If you have the motors turning the same amount, it helps ensure that the robot moves straight when one wheel is slowed by friction or anything else
- When you have synchronized motors with a ratio, it makes the robot make predictable and smooth turns


Videos on next slide

SYNCHRONIZED VS. UNSYNCHRONIZED

Click to Watch Videos


Synchronized motors

One motor getting stuck causes other motor to stop

Unsynchronized motors

Second motor continues when first gets stuck

RAMP UP / RAMP DOWN

- Ramp up makes the robot speed up gradually at the beginning of a move
- Ramp down makes the robot brake gradually at the end
- Without ramp up/ramp down you might see the robot jerk at the beginning or end
 - The robot will still adjust its motors after a brake to reach that target rotation sensor value but this may still be less accurate

DIFFERENT WAYS TO MOVE

	Regulated Power	Synchronized Motors	Ramp Up / Ramp Down
1 P O PI	✓	✓	✓
2		✓	✓
3 B C C S S O S O S O S O S O S O S O S O S	✓	X	X
4 B C S S S S S S S S S S S S S S S S S S	X	X	X

MOVING DEGREES VS. SECONDS

Move Degrees/Rotations

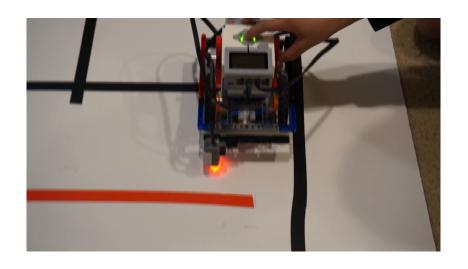
- Block does not complete until the target degree rotation is reached
- So what if the robot gets stuck somewhere on the mat?
 - Program stalls and never goes to next block
 - You will have to save the robot and take a touch penalty

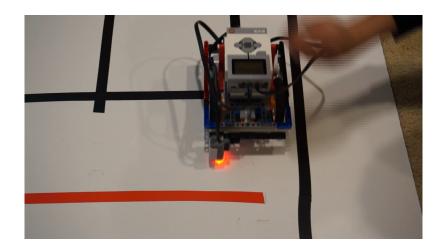
Move Seconds

- Less accurate for robot movement
 - Distance traveled depends on speed, battery level, weight of robot
- You have to remember this when deciding if move secs should be used.
- However, can help avoid stalls
 - E.g. Can be useful if your attachment arm gets stuck

Videos on next slide

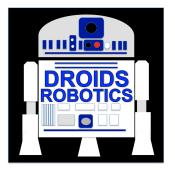
MOVING DEGREES VS. SECONDS


Click to Watch Videos


Stalled Robot

Robot gets stuck. Finishes only when released.

Unstalled Robot


Robot gets stuck but still finishes (you can hear the sound)

CREDITS

- This lesson was made by Arvind Seshan and Sanjay Seshan from FLL Team Not the Droids You Are Looking For
- This material is free to use and distribute.
- Please send us an email letting us know if you liked the material, how you used it, and if you have any corrections or suggestions for improvement.
 - team@droidsrobotics.org
- More lessons at: www.ev3lessons.com

