ADVANCED
PROGRAMMING

LESSON

DROIDS
ROBOTICS
@)

Proportional Control

By Droids Robotics

WHY PROPORTIONAL
CONTROL?

 Proportional control is very useful for FLL

 The robot moves proportionally — moving more or less based on how
far the robot is from the target distance

« For aline follower, the robot may make a sharper turn if it is
further away from the line
« Proportional Control can be more accurate and faster for getting
missions done!
» Every proportional control program consists of two stages:

1. Computing an error - how far is the robot from a target

2. Making a correction - make the robot take an action that is
proportional to the error (this is why it is called proportional
control)

© Droids Robotics, 2014, v.1.0

LEARNING WHAT IS
PROPORTIONAL

On our team, we discuss “proportional” as a game.

« Blindfold one teammate. He or She has to get across the room
as quickly as they can and stop exactly on a line drawn on the
ground (use masking tape to draw a line on the floor).

* The rest of the team has to give the commands.

When your teammate is far away, the blindfolded person must
move fast and take big steps. But as he gets closer to the line, if
he keeps running, he will overshoot. So, you have to tell the
blindfolded teammate to go slower and take smaller steps.

* You have to program the robot in the same way!

A L&A

© Droids Robotics, 2014, v.1.0

LEARN HOW TO CODE
PROPORTIONAL CONTROL

To learn how to use proportional control, we give you three different
examples:

Dog Follower: uses ultrasonic

« We used proportional ultrasonic moves in Nature’s Fury to make
sure we hit the Base Isolation Model and the Evacuation Sign just

the right amount
Line Follower: uses color sensor

* We use proportional (or full PID) on all lines on the mat to make our
moves more efficient

Gyro Turn: uses gyro sensor

* We use proportional control to make sure that we have turned the
amount we want

© Droids Robotics, 2014, v.1.0

APPLICATIONS OF
PROPORTIONAL CONTROL

Application Objective

Dog Get to a target

Follower distance from
wall

Line Stay on the

Follower edge of the line

Gyro Turn Turn to a target
angle

© Droids Robotics, 2014, v.1.0

Error

How many inches
from target location
(current_distance —
target_distance)

How far are our light
readings from those
at line edge
(current_light —
target_light)

How many degrees
are we from target
turn

Correction

Move faster based
on distance

Turn sharper
based on distance
from line

Turn faster based
on degrees
remaining

ULTRASONIC: DOG FOLLOWER

We are trying to make a program that stays 7cm away from a moving object. : This code was |
- . !
This program uses proportional control. bwn’tpen by dlu
| Droids !
| Robotics !
=== Be===== o
o1]
== — P ||
Read the Subtracts 15 Multiplies error by 5 Apply the This tries to
Ultrasonic from the computed power reach the
sensor current target for 1
distance minute.

Part 1: Compute the Error Part 2: Computes and Apply the Correction

Error is Current Distance - Target - We multiply the Error from Part 1 by 10 to
determine the speed

- We picked 5 to create a reasonable range of
speeds for our robot

We have chosen 15cm as the target.

Example:

Sensor Reading = 10cm

Error = 3cm

error*s = (3*5) =15 power

15 power is a good speed to be use at 3cm
from the target for our robot.

%
S

© Droids Robotics, 2014, v.1.0

COLOR: LINE FOLLOWER

I
Note: This program We recommend that your team uses a proportional line follower like this one. It will be smoothest of the 4 line followers in this

uses the Color lesson. There are even better line followers (that use PID control), but a line follower that uses the "P" is a great start.

Sensors in Light

Mode. This means A proportional line follower changes the angle of the turn based on how far away from the line the robot is.

that you will have

to calibrate your [o1)

sensors. Please TN

read our calibration
lessons before
continuing! :-)

Every proportional program must have 2 parts: Part 1 computes the error (in this case, how far you are from the line) and Part 2
computes a correction that is proportional to the error (in this case how much to turn). You can use proportional control with other senses
as well. It works really well!

Note: You don't
need to use a

Constant Block with Part 1: Compute the Error Part 2: Computes and Apply the Correction This line

a data wire. We - Our goal is to be at the edge of the line (light - We multiple the Error from Part 1 by 0.7 to follower ends
just did that so it sensor = 50). The Math Block above computes how determine the turn value. after 1000
would be more far off the robot is from our target of 50. - We picked 0.7 so that when we have the worst degrees.
obvious that we -The Constant Block above is our target. You can c case error of 50 or -50, the Steering in the Move Adjust to your
multiplied by a hange it for different types of lines. Block above will be 35 or -35 which is a sharp turn. needs.
constant of our - Note that in the worst case, your light sensor will - You can adjust this value to make your line

choice. read 0 or 100 (Way off the linel!). This will give an follower fit your needs.

error = 50 or -50.

© Droids Robotics, 2014, v.1.0

GYRO: LEFT TURN

|
| amount of seconds. Thank You Construction Mavericks for the original code that we
|
|

modified for this lesson! :-)

| 01 |

Part 1: Compute the Erro-

I I
Read the Subtracts desired
Gyro degrees from the
sensor current angle

Error is Current Angle - Tirget Degrees

Multiplies error if Apply the
scaling is necassary computed power

Part 2: Computes and Apply the Correction

We multiply the Error from Part 1 by 1
because we did not need to scale the power,
but you might need to.

Example:

Target = 90 degrees

Sensor Reading = 10 degrees

Error = 80 degrees

error*l = (80*1) = 80 power

80 power is 3 good speed to be use at 80
degrees from the target for our robot.

—
This tries to
reach the
target for

desired

seconds.

© Droids Robotics, 2014, v.1.0

Lo

GYRO: RIGHT TURN

The goal of this program is to create a proportional right pivot turn that ends after a
amount of seconds. Thank You Construction Mavericks for the original code that we

modified! :-)
| 01 |
Q] -
I
I — I This tries to

Read the Subtracts desired Multiplies error if Apply the Eeach tfhe
Gyro degrees from the scaling is necassary computed power arget for
sensor current angle desired

seconds.

the Gyro Part 1: Compute the Error Part 2: Computes and Apply the Correction
We multiply the Error from Part 1 by 1
because we did not need to scale the power,
but you might need to.

Error is Current Angle - Target Degrees

Example:

Target = 90 degrees

Sensor Reading = 10 degrees

Error = 80 degrees

error*1 = (80%1) = 80 power

80 power is 3 good speed to be use at 80

ﬂ degrees from the target for our robot. ~ j
. \Tj _fj :

© Droids Robotics, 2014, v.1.0

CREDITS

* This lesson was written by Sanjay Seshan and
Arvind Seshan from Droids Robotics

* The original code for the Gyro Turn was from
The Construction Mavericks. We modified it a
little to use In this lesson.

« The Construction Mavericks can be contacted at:
frank.levine@gmail.com

* More lessons at ev3lessons.com

« Contact us: team@droidsrobotics.org

© Droids Robotics, 2014, v.1.0

