
Droids Robotics Workshop
Intermediate Ohio Workshop

Overview

 Introduction

 Improving Programming Quality – My Blocks

 Improving Robot Reliability - Squaring on a
Line

 Improving Line Following - Proportional
Control

 Robot Design, Planning, Tools

© 2015 EV3Lessons.com, Last edit 9/5/2015

Improving Code Quality

Making a Move Distance My Block (Move_Inches)

In

By Droids Robotics

Why is a Move Distance My Block a
good idea

• Built-in move blocks will not take inputs (values)
in centimeters or inches.

• Much easier to measure distance with a ruler
than degrees or rotations.

• If you change your robot design to have bigger or
smaller wheels late in the season you don’t have
to re-measure every movement of your robot

• Instead of changing distances in every single
program you wrote, just go into your cool
Move Distance Block and change the
value for how many inches/cm one motor
rotation would take.

© 2015 EV3Lessons.com, Last edit 9/5/2015

Making My Blocks

 During our workshop we showed how to make a My Block with
Inputs using the EV3 Software

 Please view our Intermediate EV3Lessons.com lesson on making
My Blocks for detailed instructions: PPTX, PDF

© 2015 EV3Lessons.com, Last edit 9/5/2015

http://ev3lessons.com/translations/en-us/intermediate/MyBlocks.pptx
http://ev3lessons.com/translations/en-us/intermediate/MyBlocks.pdf

PHASE 1: MEASURE WHEELS

© 2015 EV3Lessons.com, Last edit 9/5/2015

EV3 Base Kit Wheel =
56mm diameter ÷ 25.4 (mm/inch) =

2.2 inch

2.2 inches × π = 6.93 inches in each rotation

360 degrees ÷ 6.93 inches = 52 degrees/inch

52

52

PHASE 2: Math Blocks

© 2015 EV3Lessons.com, Last edit 9/5/2015

Connecting Wires in Move Inches

© 2015 EV3Lessons.com, Last edit 9/5/2015

PHASE 3: COMPLETED Move Inches
MY BLOCK

© 2015 EV3Lessons.com, Last edit 9/5/2015

 You can find the completed block in the blue tab at the bottom

 You can double click on the block to view/edit its details

Improving Robot Reliability in FLL

In

By Droids Robotics

Common Sources of Problems in FLL

Problem Impact

Alignment in base varies from run to run Each run is different and missions
sometimes work.

Robots don’t travel straight or turn
exactly the same amount

It is hard to predict the robot location
exactly.

Errors accumulate as you travel Missions far from base fail often. It is hard
to do many missions on the same run.

© 2015 EV3Lessons.com, Last edit 9/5/2015

Starting Points in Base are Critical

 FLL teams need to figure out where to start in
base
 Jigs: a LEGO ruler/wall that your robot can

align against them in base

 Same start each time: pick one spot and start
there no matter what the mission for easy
starts

 Tick marks: Use the inch marks to pick a
starting spot for each run

 Words: Base has words. If you aren’t near an
inch mark, pick a word or letter to start on.

 Even better, try to find a way to align the
robot using other techniques

© 2015 EV3Lessons.com, Last edit 9/5/2015

U
se

 a
 ji

g

Use marks

Robot Doesn’t Travel Straight & Errors
Accumulate Over Time

 By the time you get to the far side of the table, you are no longer in the right position

 Solution: Repeat alignment techniques multiple times in a run for better reliability (see
next slide)

© 2015 EV3Lessons.com, Last edit 9/5/2015

Mission
Model 1

Mission
Model 2

Navigation on the Trash Trek Mat

© 2015 EV3Lessons.com, Last edit 9/5/2015

Ride walls

Follow lines

Square
on

lines

Align on a
mission model

Move until
you see

black

Other Factors in Reliability

 Battery level

 If you program your robot when the battery level is low, it won’t
run the same when fully charged

 Motors behave differently with low battery

 Using sensors makes you not as dependent on battery

 Motors and sensors don’t always match

 Some teams test motors, sensors and wheels to make sure that
they match

 You will never get a perfect match so we recommend use other
techniques and accept that they will be different

© 2015 EV3Lessons.com, Last edit 9/5/2015

Parallel Beams for Squaring on Lines

INTERMEDIATE EV3
PROGRAMMING LESSON

© 2015 EV3Lessons.com, Last edit 9/5/2015

By Droids Robotics

What are Parallel Beams?

 Parallel beams allow you to run two or more blocks at the same time.

 In First Lego League, they are mostly often used when you have one of more
attachment arms connected to motors and you want to turn these arms while
the robot is moving to complete a mission

© 2015 EV3Lessons.com, Last edit 9/5/2015

Robot lifting up
hoops and driving
forward.

How Do I Make a Parallel Beam?

© 2015 EV3Lessons.com, Last edit 9/5/2015

To create a parallel beam
click and drag on the
bump on the right center
of any block and release
once you hover over the
inverted bump on the left
center side on a block.

Note: Blocks before
the split will run one at
a time. After the split
blocks on the two
“beams” will run at the
same time

Want to learn more?

 To learn about Parallel Beams and their limitations/uses, please
visit the Intermediate EV3Lessons.com on Parallel Beams.

© 2015 EV3Lessons.com, Last edit 9/5/2015

By Droids Robotics

Squaring or Aligning on a Line

ADVANCED EV3
PROGRAMMING LESSON

© 2015 EV3Lessons.com, Last edit 9/5/2015

What is Squaring?

© 2015 EV3Lessons.com, Last edit 9/5/2015

Moving Each Motor Independently

 Move Steering lets you control both motors at the same time

 What if you want to move or stop one motor at a time?

 Use the Large Motor Block

© 2015 EV3Lessons.com, Last edit 9/5/2015

Large Motor Block
Large motor block in ON mode / OFF mode

Challenge

Challenge: Make the robot straighten out (align/square off)

© 2015 EV3Lessons.com, Last edit 9/5/2015

Pseudocode:
1. Start both motors
2. Stop one motor when the sensor on the

corresponding side sees the line
3. Stop moving the second motor when the

sensor on that side sees the line

Hints: Use a Large Motor Block, Use Parallel
Beams

Solution: Align On Line

© 2015 EV3Lessons.com, Last edit 9/5/2015

Repeating a Technique

 What do you notice about the solution we just presented?

 The robot isn’t quite straight (aligned) at the end of it.

 Both color sensors are on the line, but the robot stops at an
angle.

 Challenge Continued: Think about how you can improve this
code so that the robot ends straighter

 Hint: Can you repeat the last process by looking for white?

 This assumes that the line we were straightening out on has
white on both sides.

© 2015 EV3Lessons.com, Last edit 9/5/2015

Synchronization errors with parallel
beams

 When you have two or more beams you do not know when each beam will
finish.

 If you wanted to move after the align finishes you might try to add a move
block at the end of one of the beams.
 Note: This will not work because EV3 code will play your move block

without waiting for the other beam to finish.

 Solution: You need to synchronize your beams. To learn more about
synchronization and solutions go to the Advanced EV3Lessons.com Lesson
on Sync Beams: PPTX, PDF , EV3 Code

 In this Workshop, we solved the problem of synchronization by making a My
Block out of the align code.
 My Blocks always wait for both beams to finish before exiting

 You will have 2 inputs: Color and Power

© 2015 EV3Lessons.com, Last edit 9/5/2015

http://ev3lessons.com/translations/en-us/advanced/SyncBeams.pptx
http://ev3lessons.com/translations/en-us/advanced/SyncBeams.pdf
http://ev3lessons.com/translations/en-us/advanced/SyncBeams.ev3

Step 2: My Block With Dual Stage Fix

© 2015 EV3Lessons.com, Last edit 9/5/2015

Calibrating Color Sensors
for better line followers

INTERMEDIATE EV3
PROGRAMMING LESSON

© 2015 EV3Lessons.com, Last edit 9/5/2015

By Droids Robotics

Why Calibrate?

• When you use your EV3 Color Sensor in Light Sensor Mode (e.g.,
reflected light mode), you should calibrate it

• Calibration means “teaching” the sensor what is “Black” and what is
“White”
• This makes White read as 100 and Black read as 0

• Run your Calibrate Program whenever light or table conditions change

• If you are in First Lego League, it is probably a good idea to run it
before you start a table run where you use your EV3 Sensors in Light
Mode

• If you have 2 Color Sensors, the same calibration will apply to BOTH sensors. You don’t have to make
a different calibration program for each color sensor. Make it using 1 sensor on one of the ports and
the values will apply to both.

• If you have sensors that are very different from each other, you will need to write your own
custom calibration.

© 2015 EV3Lessons.com, Last edit 9/5/2015

Color Sensor Block: Calibrate Mode

© 2015 EV3Lessons.com, Last edit 9/5/2015

Minimum: Calibrate for black
Maximum: Calibrate for white
Reset: Delete previous calibration values

Input the value you want to
calibrate to

Steps/Pseudocode for Calibration

Challenge: Write a program that will calibrate your EV3 Color Sensors for black
and white.

Pseudocode:

 Reset the existing calibration values

 Display that the user should place the robot on “black” and press ok

 Wait for button press

 Read the Color Sensor Block in Light mode and save it to the Color Sensor
Block in Calibrate mode.

 Repeat above three steps for calibrating “white”.

© 2015 EV3Lessons.com, Last edit 9/5/2015

Calibrate Program Solution

• When you run the above Calibrate Program, you will be asked to place the
robot on a BLACK section of the mat and then hit center EV3 button.

• Then you will be asked to place the robot on WHITE and hit center EV3
button.

© 2015 EV3Lessons.com, Last edit 9/5/2015

By Droids Robotics

Proportional Line Follower

ADVANCED EV3
PROGRAMMING LESSON

© 2015 EV3Lessons.com, Last edit 9/5/2015

Learn and Discuss Proportional Control

 On our team, we discuss “proportional” as a game.

 Blindfold one teammate. He or She has to get across the room as quickly as they can and
stop exactly on a line drawn on the ground (use masking tape to draw a line on the floor).

 The rest of the team has to give the commands.

 When your teammate is far away, the blindfolded person must move fast and take big
steps. But as he gets closer to the line, if he keeps running, he will overshoot. So, you
have to tell the blindfolded teammate to go slower and take smaller steps.

 You have to program the robot in the same way!

© 2015 EV3Lessons.com, Last edit 9/5/2015

Why Proportional Control?

• What does proportional mean?

• The robot moves proportionally – moving more or less based on
how far the robot is from the target distance

• For a line follower, the robot may make a sharper turn if it is
further away from the line

• Proportional Control can be more accurate and faster

© 2015 EV3Lessons.com, Last edit 9/5/2015

What Proportional Control Looks Like

• The Pseudocode for every proportional control program consists
of two stages:

1. Computing an error  how far is the robot from a target

2. Making a correction make the robot take an action that is
proportional to the error (this is why it is called proportional
control). You must multiply the error by a scaling factor to
determine the correction.

© 2015 EV3Lessons.com, Last edit 9/5/2015

Compute Error Make Correction

How Far Is the Robot From The Line?

 Reflected light sensor readings show how “dark” the measured
area is on average

 Calibrated readings should range from 100 (on just white) to 0
(on just black)

© 2015 EV3Lessons.com, Last edit 9/5/2015

Light Sensor Measured Area:

Line

Reading = 100

Reading = 0
Reading = 50 Reading = 25

Reading = 75

Line Following

 Computing an error  how far is the robot from a target

 Robots follow the edge of line  target should be a sensor reading of 50

 Error should indicate how far the sensor’s value is from a reading of 50

 Making a correction make the robot take an action that is
proportional to the error. You must multiply the error by a scaling
factor to determine the correction.

 To follow a line a robot must turn towards the edge of the line

 The robot must turn more sharply if it is far from a line

 How do you do this: You must adjust steering input on move block

© 2015 EV3Lessons.com, Last edit 9/5/2015

Pseudocode

© 2015 EV3Lessons.com, Last edit 9/5/2015

Application Objective Error Correction

Line
Follower

Stay on the edge
of the line

How far are our light
readings from those at
line edge
(current_light –
target_light)

Turn sharper
(steering) based on
distance from line

Gyro Turn Turn to a target
angle

How many degrees are
we from target turn

Turn faster based on
degrees remaining

Dog
Follower

Get to a target
distance from
wall

How many inches from
target location
(current_distance –
target_distance)

Move faster based
on distance

Gyro Turn and Dog Follower are in the Advanced EV3Lessons.com lesson on
Proportional Control

Challenge: Proportional Line Follower

Challenge: Can you write a proportional line follower that changes the angle of
the turn depending on how far away from the line the robot is?

Pseudocode:

1. Reset the Rotation sensor (Only required for line following for a total
distance)

2. Compute the error = Distance from line = (Light sensor reading – Target
Reading)

3. Scale the error to determine a correction amount. Adjust your scaling factor
to make you robot follow the line more smoothly.

4. Use the Correction value (computed in Step 3) to adjust the robot’s turn
(steering) towards the line.

© 2015 EV3Lessons.com, Last edit 9/5/2015

Solution: Proportional Line Follower

© 2015 EV3Lessons.com, Last edit 9/5/2015

Credits

 This tutorial was created by Sanjay Seshan and Arvind Seshan
from Droids Robotics.

 Author’s Email: team@droidsrobotics.org

 More lessons at www.ev3lessons.com

© 2015 EV3Lessons.com, Last edit 9/5/2015

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

